A Gentle Introduction to Grassmannians

نویسنده

  • Dhruv Ranganathan
چکیده

We introduce the Grassmannian G(k, V ) as a set, and via the tools of multilinear algebra, the Plücker embedding and the Plücker coordinates on G(k, V ). We also prove some basic theorems about the Grassmannians and attempt to familiarize the reader with some of the fundamental ideas and language needed to work with the Grassmannian and its subvarieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Twisted Commutative Algebras

This article is an expository account of the theory of twisted commutative algebras, which simply put, can be thought of as a theory for handling commutative algebras with large groups of linear symmetries. Examples include the coordinate rings of determinantal varieties, Segre– Veronese embeddings, and Grassmannians. The article is meant to serve as a gentle introduction to the papers of the t...

متن کامل

Two Results on Branched Coverings of Grassmannians

Introduction. In this paper we present two results on branched coverings of Grassmannians.

متن کامل

A Gentle Introduction to Yao’s Garbled Circuits

This is a short, gentle introduction to the Yao’s Garbled Circuits construction and recent optimizations, as well as the garbled circuit definitions.

متن کامل

Slicing Planar Grid Diagrams: a Gentle Introduction to Bordered Heegaard Floer Homology

We describe some of the algebra underlying the decomposition of planar grid diagrams. This provides a useful toy model for an extension of Heegaard Floer homology to 3-manifolds with parametrized boundary. This paper is meant to serve as a gentle introduction to the subject, and does not itself have immediate topological applications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010